Point (Countable) paracompactness
نویسندگان
چکیده
منابع مشابه
A Note on Monotone Countable Paracompactness
We show that a space is MCP (monotone countable paracompact) if and only if it has property (∗), introduced by Teng, Xia and Lin. The relationship between MCP and stratifiability is highlighted by a similar characterization of stratifiability. Using this result, we prove that MCP is preserved by both countably biquotient closed and peripherally countably compact closed mappings, from which it f...
متن کاملAnswering a question on relative countable paracompactness
In [6], Yoshikazu Yasui formulates some results on relative countable paracompactness and poses some questions. Like it is the case with many other topological properties [1], countable paracompactness has several possible relativizations. Thus a subspace Y ⊂ X is called countably 1-paracompact in X provided for every countable open cover U of X there is an open cover V of X which refines U and...
متن کاملCountable Paracompactness and Weak Normality Properties By
After proving this theorem, we obtain similar results for the topological spaces studied in [7] and [11]. Also, cogent examples are given and the relation this note bears to the work of others is discussed. We shall follow the terminology of [5] except we shall assume separation properties for a space only when these assumptions are explicitly stated. For an infinite cardinal m, a set A in a to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Australian Mathematical Society
سال: 1973
ISSN: 0004-9735
DOI: 10.1017/s144678870001288x